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A quasi-steady-state method is presented that integrates stiff differential equations
arising from reaction kinetics. This predictor–corrector method is A-stable for linear
equations and second-order accurate. The method is used for all species regardless of
the time scales of the individual equations, and it works well for problems typical of
hydrocarbon combustion. Start-up costs are low, making the method ideal for use in
process-split reacting-flow simulations which require the solution of an initial-value
problem in every computational cell for every global time step. The algorithm is
described, and error analysis and linear stability analysis are included. The algorithm
is also applied to several test problems, and the results are compared to those of the
stiff integrator CHEMEQ. The method, which we callα-QSS, is more stable, more
accurate, and less costly than CHEMEQ.c© 2000 Academic Press
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1. INTRODUCTION

Many problems in science and engineering may be described mathematically as coupled
sets of ordinary differential equations (ODEs). These may be written generically in terms
of the rates of change,{gi }, of the dependent variables,{yi }, as

dyi

dt
= gi , 1≤ i ≤ n. (1)

When gi depends on variables other thanyi (that is, the otheryj in the system), these
equations are nonlinear.
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Our primary application of Eq. (1) is to sets of coupled, nonlinear ODEs that represent
chemical reaction sets. In this case, the dependent variables{yi } are concentrations or
densities of reacting chemical species. Sometimes this equation is supplemented by another
equation for the change in temperature or energy release that results from the species’
interactions. The source termgi , which is then a function of the concentrations and the
thermodynamic state, may be written as the difference of the production rateqi and the loss
rate pi yi :

dyi

dt
= qi − pi yi , 1≤ i ≤ n . (2)

The time scalesτi ≡ 1/pi for the various species often differ by many orders of magnitude,
and there may be strong coupling between species (i.e., the Jacobian matrix has significant
off-diagonal elements). Under these circumstances, the set of equations represented by
Eq. (2) is consideredstiff and does not lend itself readily to numerical solution by classical
methods such as the low-order Euler methods or higher-order Adams–Moulton methods
[1–3]. Such a system then requires special techniques to solve.

The coupled reaction set represented by Eq. (2) is often a part of a larger model that solves
these equations coupled to the partial differential equations describing fluid dynamics. In
such cases, the chemical reactions are only one of several processes that might, for example,
include advection, diffusion, or radiation transport. Techniques based onprocess splitting
(or operator splitting) are used to solve such chemically reacting flows [3]. The basic idea
in operator splitting is to calculate the effects of individual physical processes separately
for a chosen global time step1tg and then combine the results in some way. Each process
in turn can change different system variables during1tg. Then, when it is time to integrate
the ODEs representing the chemical changes within1tg, the integrator is faced with a new
initial value problem in each computational cell. The integrator must therefore solve

dyi

dt
= qi − pi yi , yi (t

0) = y0
i 1≤ i ≤ n, (3)

to t = t0+1tg. The ODE integration may subdivide1tg into smaller steps,1t , to obtain
an accurate, stable solution. Here, the time step1t is called thechemical time stepbecause
it is the time step that the ODE integrator uses to advance the chemical reactions. The size
of 1t generally varies in the course of the calculation.

Given that fluid dynamic calculations are seldom accurate to better than a few percent,
any requirement for the chemical integrator to calculate the species concentrations more
accurately than a few tenths of a percent is usually excessive. Therefore, the chemical
integrator may be relatively low order. Also, since the integrator must solve multiple initial
value problems “from scratch” at every global time step, it would be easiest to use a single-
point method, which uses only information from the current time level to calculate the
concentrations at1t . This is in contrast to multi-point methods that must store concentration
or source-term values from several successive time steps in order to advance the solution.
Multi-point methods have a start-up penalty until a sufficient number of steps have been
taken to build the history required for the calculation, and they often require interpolation
procedures if1t changes during the integration. By comparison, a single-point method has
minimal start-up penalty at the beginning of an integration step.

CHEMEQ [4, 5] is a second-order single-step ODE integrator that has been used success-
fully as a part of a number of different types of reacting-flow codes. These have included
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applications to combustion [6–12] and solar physics [13–15]. CHEMEQ is ahybrid method,
which means it chooses between a stiff method and a non-stiff method for integrating each
ODE within the system depending upon the time scale of that equation. CHEMEQ has
been shown to outperform standard stiff ODE solvers by a factor of 50–100 in speed in
validation studies on chemical integrations alone (i.e., not coupled to fluid dynamics) when
only moderate accuracy was required [4]. More recently, an integrator based heavily on
CHEMEQ outperformed a first-order quasi-steady-state method and the implicit precon-
ditioning method CHEMSODE [16] on a photochemical smog problem [17]. Despite its
strengths, CHEMEQ exhibits instability under some situations and is limited in the accuracy
it can achieve [20].

This report describes a quasi-steady-state method which we callα-QSS. This method is
A-stable for linear problems and second-order accurate. It is more stable, more accurate,
and less expensive than CHEMEQ, and it successfully integrates some systems for which
CHEMEQ fails [20]. CHEMEQ2, a subroutine that employsα-QSS, has now been used suc-
cessfully in hydrogen–air flame studies in microgravity [18], on studies of pulse-detonation
engines [19], on thermonuclear mechanisms used in supernova simulations, and on test
cases used to validate CHEMEQ [20]. In addition to describing the new algorithm, we
present error and linear stability analyses. Results obtained using CHEMEQ2 are compared
to those obtained using CHEMEQ.

2. INTRODUCTION TO QSS METHODS

Consider a simplified form of Eq. (2), in which the subscripti is dropped for convenience,
t0 = 0, andy(t0) = y0,

dy

dt
= q − py y(0) = y0. (4)

If p andq are constant, then Eq. (4) has an exact solution given by

y(t) = y0e−pt + q

p
(1− e−pt). (5)

Quasi-steady-state (QSS) methodsare based on the solution given in Eq. (5) [22–25]. Ifq
andp are slowly varying, evaluating Eq. (5) att = 1t usingq(t0) andp(t0) provides a good
approximation fory(1t). This approach gives a first-order method which is the simplest
QSS algorithm. More sophisticated QSS algorithms incorporate the time dependence ofp
andq and may place Eq. (5) into an alternative algebraic form. The common thread between
the QSS methods is their basis in Eq. (5), which requires the methods to return the exact
solution ifq andp are constant. There are many QSS methods documented in the literature,
and theα-QSS method is compared to several of them in Section 3.2.

QSS methods are often compared with standard stiff solvers such as LSODE [26, 27],
which is a variable-order method based on Gear’s backward differentiation formulae (BDF)
[28]. However, such comparisons have been largely limited to the integration of a single
problem from one set of initial conditions, not reacting-flow simulations in which start-up
overhead and storage requirements play key roles in the overall efficiency of the integrator.
Verwer and Simpson describe one such test from atmospheric chemistry, in which a sim-
ple two-step BDF method outperforms a first-order implicit QSS method and a two-stage
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explicit QSS method. The test involved the calculation of emissions and was not coupled
to fluid dynamics [23]. Jayet al. introduced two QSS methods and examined their perfor-
mance on a set of atmospheric tests involving 32 species [24]. These two QSS methods
outperformed both a standard, first-order QSS method and CHEMEQ, but the methods
were slower than multi-point BDF methods. Variable-order, multi-point BDF methods gen-
erally outperform QSS methods when the chemistry integration stands alone. However,
the demands of a reacting-flow application are very different than those of a stand-alone
integration, and the conclusions of these studies cannot be extrapolated to reacting-flow
problems.

Detailed studies of various BDF and QSS methods, as well as other competing integrators,
would be required to reconcile these conflicting results and establish the best methods for
reacting-flow calculations. In this article, we do not attempt to settle this debate. Instead,
we choose to introduce a new QSS method that is well suited to these problems.

3. THE α-QSS ALGORITHM

3.1. Algorithm Development

Given the demands of a reacting-flow application, we chose a predictor–corrector im-
plementation for the integrator. Evaluating Eq. (5) at1t using initial values serves as the
predictor step, and a correction based on the initial and the predicted values then follows.
The corrector step can be repeated using the previous corrector result as the new predicted
value.

First, a convenient algebraic form for Eq. (5) was chosen. Equation (5) can be evaluated
at t = 1t , yielding

y(1t) = y0+ 1t (q − py0)

1+ αp1t
, (6)

for α defined by

α(p1t) ≡ 1− (1− e−p1t )/(p1t)

1− e−p1t
. (7)

The parameterα is a function ofp1t , as shown in Fig. 1. Note thatα→ 0 asp1t →−∞;
α→ 1 asp1t →∞; andα = 1/2 for p1t = 0. The meanings of these limits are clarified
by recalling thatp1t = 1t/τ . The α→ 1 limit corresponds to an infinitely fast ODE
relative to1t , andα = 1/2 corresponds to an infinitely slow ODE. Equation (6) is exact
for any value ofp (providedq and p are constant). However, we splitg such thatpy is a
non-negative loss rate, so only values ofp1t ≥ 0 need be considered.

A predictor–corrector method based on the solution in Eq. (6) takes the form

yp = y0+ 1t
(
q0− p0y0

)
1+ α01tp0

Predictor, (8)

yc = y0+ 1t (q∗ − p∗y∗)
1+ α∗1tp∗

Corrector. (9)

Superscript 0 indicates initial values, and superscriptsp andc indicate predicted and cor-
rected values, respectively. The predictor uses the initial values ofq, p, and y, but the
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FIG. 1. The parameterα as a function ofp1t .

“starred” variables (q∗, p∗, y∗, andα∗) can be based on both the initial values and the
predicted values.

If we assume linear profiles in time forq andp between the initial and predicted values,
we can find an exact series solution for Eq. (2). (This solution is illustrated in conjunction
with the error analysis in Section 3.3.) Unfortunately, the series solution does not readily
provide an efficient integration technique, nor does it indicate appropriate averages for
the starred variables in the corrector. However, solutions do exist under slightly simpler
conditions that can be reproduced with appropriate choices of the starred variables.

For instance, ifp is constant andq is linear in time, the exact solution to Eq. (2) can be
written as

y(1t) = y0+ 1t (q̃ − py0)

1+ α1tp
, (10)

for α = α(p1t) from Eq. (7) and

q̃ = αq(1t)+ (1− α)q0. (11)

Alternatively, if q = 0 andp is linear in time, the exact solution of Eq. (2) is

y(1t) = y0+ 1t (− p̄y0)

1+ ᾱ1t p̄
, (12)

in which

p̄ = 1

2
(p(1t)+ p0), (13)

andᾱ = α( p̄1t) from Eq. (7).
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These exact solutions can be reproduced by our predictor–corrector scheme if we use
Eq. (14) as the corrector step:

yc = y0+ 1t
(
q̃ − p̄y0

)
1+ ᾱ1t p̄

. (14)

To calculateq̃ and p̄ from Eqs. (11) and (13), we replaceq(1t) andp(1t)with qp andpp.
Whenq andp are known functions oft , the exact values at1t are used in these expressions.
We refer to the new method, which uses Eq. (8) as the predictor and Eq. (14) as the corrector,
asα-QSS. This name emphasizes the dual role thatα plays in returning the exact solution
for constantq andp and in providing a weighted average ofq whenq is not constant. This
method can be applied to problems with generalq andp and not just to the simplified cases
for which α-QSS returns the exact solution. As shown in Sections 3.3 and 3.4,α-QSS is
A-stable for linear problems and second-order accurate for generalq and p.

3.2. Comparison to Previous Methods

In addition to the algebraic form chosen for Eqs. (8) and (14),α-QSS differs from
previous QSS methods in its choice of averaging and its implementation as a predictor–
corrector method. Previous methods that calculate average values forp andq use the same
averaging method for both terms. For example, the two-stage explicit method introduced by
Verwer and Van Loon [22] and tested by Verwer and Simpson [23] uses a simple algebraic
average for bothq and p calculated from initial and predicted values. CREK1D [25] uses
an implicit exponential Euler formulation in whichα(p1t) gives a weighted average of the
compositesource terms:

y(1t) = y0+1t (αg(1t)+ (1− α)g0). (15)

In contrast, theα-QSS algorithm uses a simple algebraic average forp and anα-weighted
average forq in order to match the exact solutions described earlier.

Other QSS methods combine the results of first-order calculations in a way that improves
accuracy. Jayet al.[24] describe two such methods. Their “extrapolated QSS” method finds
the solution att0+1t , first with a single step and then with two steps of1t/2 each. A
simple extrapolation then estimates the solution that would result if an infinitely small time
step were used. Their second method, “symmetric QSS,” is a two-step method requiring
three evaluations of the source terms. Each of these steps acts as ifq and p were constant,
and the values forq andp are taken at the same time level based on the previous calculation.
No averaging ofq or p occurs between time levels in these methods.

The algebraic form of Eqs. (8) and (14), which was introduced in Eq. (6), is based on the
asymptotic update employed by CHEMEQ when the time scale for an equation is smaller
than some user-specified value [4, 5]. However, CHEMEQ effectively replaces ¯α in Eq. (14)
with the constant 1/2, which is equivalent to choosing the Pad´e approximation [2]

exp(x) ≈ 2+ x

2− x
(16)

either in the definition ofα or in Eq. (5). When the time scale for an equation is larger than
some user-specified value, that equation is integrated using the modified Euler method. The
hybrid method studied by Lorenzini and Passoni [17] uses CHEMEQ’s update equations
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but different criteria for determining the time step and for choosing between the asymptotic
and standard modified Euler updates. CHEMEQ’s asymptotic update also uses different
averages in the corrector forp andq than those used in Eq. (14). These differences lead
to instability in CHEMEQ that is illustrated in Section 5. The averages chosen byα-QSS
eliminate this instability, andα-QSS automatically approaches the modified Euler method
as p1t → 0.

3.3. Error Analysis

The method has a third-order error term for a single step, which makes it second-order
accurate over the course of an integration. This can be shown by examining the exact series
solution of Eq. (1). Writing the series fory(t), q(t), and p(t) about initial valuesy0, q0,
and p0 at t0 = 0 gives

y(t) = y0+ y1t + y2t2+ · · · =
∞∑
j=0

yj t
j , (17)

q(t) =
∞∑
j=0

qj t
j , (18)

p(t) =
∞∑
j=0

pj t
j . (19)

This development deals with a single species,y, so subscriptj corresponds to the coefficient
of thet j terms in the expansions in Eqs. (17)–(19) and not thej th species in a multi-species
system. Substitution into Eq. (4) provides the coefficients fory(t) in Eq. (17),

yj = 1

j

(
qj−1−

j−1∑
k=0

pj−1−kyk

)
, (20)

for j > 0.
In general,q and p are given as functions ofy, not as functions oft . Therefore, the

coefficients in Eqs. (18) and (19) are not known, and Eq. (4) is a nonlinear differential
equation. We will first perform an error analysis for the linear version of Eq. (4), in which
q and p are known functions oft , and then extend this analysis to the nonlinear case. For
the linear case, the predicted values are simplyqp = q(1t) and pp = p(1t). Subtracting
the series expansion for Eq. (14) from the exact solution evaluated att = 1t yields

y(1t)− yc = 1t3

6

(
−1

2
p1q0− q2+ p2y0

)
+ O(1t4) [linear case]. (21)

The leading error term isO(1t3) per time step. Since the number of time steps required to
reach a given time is proportional to 1/1t , the error for the method is second-order [1].

The method is second-order for nonlinear problems as well. To illustrate this, first note
that the leading error term for the predicted valuesyp is second-order:

y(1t)− yp = 1t2

2
(q1− p1y0)+ O(1t3). (22)
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Sinceq and p are polynomials in the species concentrations for the nonlinear systems
representing reaction kinetics, the leading error terms for the predicted valuesqp and pp

are also second-order. This error can be represented as

q(1t)− qp = εq1t2+ O(1t3), (23)

p(1t)− pp = εp1t2+ O(1t3), (24)

for some unknown coefficientsεq andεp. Using these predicted values in Eq. (14) gives an
error term of the form

y(1t)− yc = 1t3

(
− 1

12
p1q0− 1

6
q2+ 1

6
p2y0+ 1

2
εq − 1

2
εpy0

)
+ O(1t4)

[nonlinear case]. (25)

As with the linear problem, the leading-order error term for the nonlinear problem isO(1t3),
and the method is still second-order over the course of an integration.

3.4. Linear Stability Analysis

For the single linear equation

dy

dt
= λy, (26)

the coefficientλ can be a function oft but not a function ofy. Using the average valuēλ
given by

λ̄ = 1

2
(λ(t = 0)+ λ(t = 1t)), (27)

α-QSS has amplification factorG given by

G = 1+ λ̄1t

1− ᾱλ̄1t
. (28)

The signs in Eq. (28) reflect the fact thatλ = −p, and note that ¯α = α(−λ̄1t). Using
Eq. (7), the expression forG simplifies to

G = exp(λ̄1t). (29)

For λ̄ = a+ b
√−1 with a, b both real, the magnitude ofG is simply

‖G‖ = exp(a1t). (30)

Since‖G‖ ≤ 1 for a ≤ 0 for any value ofb, the method is A-stable. This does not prove
that α-QSS is A-stable when applied to nonlinear systems of ODEs for which{pi } and
{qi } depend on{yi }. However, in testing to date, an accuracy-based time step criterion has
worked well for the QSS update. This criterion, used originally in the subroutine CHEMEQ
[5], was used in CHEMEQ2 [21] to generate the results presented in Section 5.
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4. IMPLEMENTATION ISSUES

Theα-QSS update is used on all equations in the system regardless of the time scale
of the ODE, and iterations may be done on the corrector that improve the accuracy of the
result. Again using superscript 0 to indicate values at the beginning of the chemical time
step and subscripti to specify speciesi , the QSS update is given by

yp
i = y0

i +
1tg0

i

1+ α0
i 1tp0

i

Predictor, (31)

yc
i = y0

i +
1t
(
q̃i − pi y0

i

)
1+ αi1t pi

Corrector. (32)

The predictor uses all initial values, andα0
i = α(p0

i 1t). After calculating the predicted
concentrations{yp

i } for all of the species in the system, next obtain{qp
i } and{pp

i } from {yp
i },

and then calculate

pi = 1

2

(
p0

i + pp
i

)
, (33)

αi = α(pi1t), and finally

q̃i = αi q
p
i + (1− αi )q

0
i . (34)

Equation (32) then gives the corrected concentrations{yc
i }. To iterate on the corrector, use

the values{yc
i } from one step as{yp

i } for the next step.
Having an accurate approximation forα(p1t) that does not require an evaluation of the

exponential function makes the method given by Eqs. (31) and (32) more attractive. Recall
that p is strictly non-negative based on the way the chemical source term is split, so this
approximation need only hold for positive values ofp1t . Equation (7) indicates that as
p1t →∞, a reasonable approximation forα(p1t) is

α(p1t) ≈ 1− 1

p1t
. (35)

Using this approximation forα eliminates the need to find an accurate approximation for
e−x asx→∞, as would be required if the solver were based on Eq. (5) rather than Eq. (6).
Using the Pad´e approximation [2]

ex ≈ 1680+ 840x + 180x2+ 20x3+ x4

1680− 840x + 180x2− 20x3+ x4
(36)

in the definition ofα(p1t) gives

α(p1t) ≈ 840r 3+ 140r 2+ 20r + 1

1680r 3+ 40r
, (37)

for r ≡ 1/(p1t). These two approximations are shown with the exact curve forα in Fig. 2.
The approximation given by Eq. (37) is labeled Pad´e (a). Unlike Fig. 1, thex-coordinate
in Fig. 2 isr . The linear approximation in Eq. (35) is closer to the exact value ofα than
the approximation in Eq. (37) forr ≤ 0.16762; forr > 0.16762, Eq. (37) is more accurate.
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FIG. 2. Approximations forα as a function ofr = 1/(p1t).

Therefore, the better approximation can be chosen based upon the value ofr . This combined
approximation differs from the exact value ofα by at most 0.3%. This error occurs in a
narrow region around the transition from the linear to the rational approximation.

A second approximation forα results from the Pad´e approximation

ex ≈ 360+ 120x + 12x2

360− 240x + 72x2− 12x3+ x4
. (38)

This approximation gives

α(p1t) ≈ 180r 3+ 60r 2+ 11r + 1

360r 3+ 60r 2+ 12r + 1
. (39)

This second approximation forα is designated Pad´e (b) and is also shown in Fig. 2. Since
this approximation recoversα = 1 for r = 0 andα→ 1/2 for r →∞, Eq. (39) can be
used alone with only a slight accuracy penalty compared to the combined approximation
of Eqs. (35) and (37). In testing to date, this accuracy penalty inα has not caused accuracy
problems in the species solutions, and using this single equation eliminates the logic check
required to determine which of Eqs. (35) or (37) to use for the combined method.

Accuracy is controlled by choosing1t and the number of corrector iterations,Nc. A
single corrector calculation is performed ifNc = 1, and as Section 5 illustrates, increasing
Nc improves accuracy. The subroutine CHEMEQ2 used to testα-QSS chooses1t using
the same accuracy-based criterion as CHEMEQ. An introduction to the time step criterion
is needed to understand the results comparison of Section 5, but the specifics of the im-
plementation are not included here. The time step selection algorithm is fully documented
elsewhere [20, 21]. The difference between the predicted and corrected concentration values
is modeled as a single second-order term:

yc
i − yp

i = a2(1t)2. (40)
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The user specifies a target magnitude for this correction term using a parameterε:

‖a2(1t)2‖target= εyc
i . (41)

The coefficienta2 is calculated from Eq. (40) using values foryc
i , yp

i , and1t for the current
update. A new1t is then calculated based on Eq. (41). In the numerical implementation,
the1t calculation is biased such that1t is lowered quickly if the correction term is too
large, and the species requiring the most restrictive1t governs the calculation [5].

The effect of the thermodynamic state on the reaction rate constants has been ignored in
the previous developments. The rate constants are often calculated once before the predictor
step using the initial values and held constant during the corrector step. A new thermody-
namic state is then found at the new time level and used for the following predictor and
corrector. If the integration is particularly sensitive to the thermodynamic state, this state
can be recalculated for the corrector using the predicted solution. If the system requires
the integration of a thermodynamic variable (such as temperature) along with the species
concentrations, then the source term for this extra variable is split just as with the concen-
trations. If there is no “loss” term for that variable that can be assumed proportional to the
variable, then the entire source term is assigned toq, and the method reduces to the modified
Euler method for that equation sinceα(0) = 1/2.

Linear stability analysis indicates thatα-QSS is A-stable, but this result holds no guar-
antees for the nonlinear systems of chemical kinetics. In a stand-alone integration, the
accuracy-based time step criterion used by CHEMEQ2 can allow the time step to grow
large enough as equilibrium is approached so that the method becomes unstable [20]. This
phenomenon is illustrated in Section 5 and discussed further in Section 6. For such cases, a
stability constraint such as that discussed in Section 6 may be used, or a ceiling on the time
step may be imposed. In a reacting-flow code, the global time step acts as a ceiling on the
chemical time step, so this instability problem is minimal.

5. NUMERICAL RESULTS

Two examples are described here in detail. The first is a system of equations involving
cesium and cesium ions that was originally suggested by D. Edelson of Bell Laboratories.
This test was used to compare the original CHEMEQ subroutine to other stiff solvers,
including those of Gear and Kregel, as shown in [5]. The second set of tests involves a
hydrogen–oxygen combustion mechanism and focuses on the effect of corrector iteration
on the timing and accuracy ofα-QSS. Theα-QSS calculations were performed by the
subroutine CHEMEQ2, which is the subroutine CHEMEQ with its hybrid method replaced
with α-QSS. Two reacting-flow applications are then discussed briefly in Section 5.3.

5.1. Cesium Tests

The cesium mechanism, shown in Table I, involves seven species and seven one-way
reactions. The rate constantski are fixed at the values shown. The inert collision partner, M
in reaction 5, may be Cs, CsO2, O2, or N2, so the concentration of M used to calculate the
reaction rate is the sum of the concentrations of these four species. The initial conditions
and the solution values at 1000 s used for the accuracy study are included in Table II [5].
These solution values, which we call the “accepted values” in the following error analysis,
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TABLE I

Cesium Mechanism

Reaction ki

1) O−2 + Cs+
k1→ Cs+O2 5× 10−8 cm3/s

2) Cs+ + e−
k2→ Cs 1× 10−12 cm3/s

3) Cs
k3→ Cs+ + e− 3.24× 10−3 s−1

4) O−2
k4→ O2 + e− 4× 10−1 s−1

5) O2 + Cs+M
k5→ CsO2 +M 1× 10−31 cm6/s

6) O2 + e− +O2

k6→ O−2 +O2 1.24× 10−30 cm6/s

7) O2 + e− + N2

k7→ O−2 + N2 1× 10−31 cm6/s

are the common result of running LSODE and CHEMEQ2 at excessively high accuracies.
The species number densities as a function of time for this case are shown in Fig. 3.

Time step histories for CHEMEQ2 and CHEMEQ are shown in Fig. 4. As mentioned
earlier, the asymptotic update used by CHEMEQ is unstable under some circumstances,
and the details of this instability are documented elsewhere [20]. This cesium integration
is an example of when CHEMEQ becomes unstable. CHEMEQ produces oscillations in
1t between 20 s and 1000 s. CHEMEQ2 does not produce these oscillations, although the
accuracy-based time step constraint lowers the time step in this region.

A series of studies evaluated the accuracy of CHEMEQ2 compared to CHEMEQ. These
solved the Cs test problem given above and used the reference solution at 1000 s as a
benchmark. The tests varied the value ofε from 10−1 to 10−6. Additional tests fixedε and
varied Nc from 1 to 10. Figure 5 summarizes the results of the tests by showing the rms
error as a function of CPU time, which was scaled by the smallest increment the timing
routine could resolve. The CHEMEQ2 results are shown as a series of overlapping profiles
of the shape shown in the schematic in Fig. 6. Each profile is for a fixed value ofε, and the
points on it correspond to different values ofNc.

The error computed for each computation (fixedε andNc) is based on the the accepted
values at 1000 s. The relative errorei for each speciesi is

ei = yi,accepted− yi,calculated

yi,accepted
. (42)

TABLE II

Initial and t = 1000 s Species Concentrations for the Cesium

Mechanism Test Problem

Species yi (0 s) (cm−3) yi (1000 s) [cm−3]

e− 1× 102 4.9657897283× 104

O−2 5.2× 102 2.5913949444× 104

Cs+ 6.2× 102 7.5571846728× 104

Cs 1× 1012 1.5319405460× 103

CsO2 0 1.000× 1012

N2 1.4× 1015 1.400× 1015

O2 3.6× 1014 3.590× 1014
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FIG. 3. Species number densities as a function of time for the cesium mechanism test problem.

A root-mean-square error for the six reacting species (excluding the inert N2) is

erms=
√∑6

i=1e2
i

6
. (43)

There is only a single curve for CHEMEQ in Fig. 5. Each point on this curve corre-
sponds to a different value ofε. The hybrid method, as implemented in CHEMEQ and
used in this problem, becomes unstable and the solutions are corrupted if multiple corrector
iterations are used. Lorenzini and Passoni, however, were able to use multiple corrector

FIG. 4. Time step histories for the cesium integration using CHEMEQ and CHEMEQ2 forε = 0.01.
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FIG. 5. Root mean square error at 1000 s versus scaled CPU time to reach 1000 s for CHEMEQ and CHEMEQ2
for a range ofε and Nc. A schematic of each CHEMEQ2 curve is shown in Fig. 6, and the CHEMEQ results
correspond toε = 10−1 to 10−6.

iterations successfully in other implementations of the hybrid method for other problems
[17]. CHEMEQ2 does not have this instability problem.

For a single iteration and large enoughε, the CHEMEQ2 results lie roughly along the
CHEMEQ curve. In this case, the CHEMEQ2 simulation takes less time, but gives a less

FIG. 6. Schematic of the types of profiles for fixedε in Fig. 5. The numbers next to each symbol give the
corresponding value ofNc. As described in the text, the solutions for the cesium test problem converge after about
three iterations.
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accurate solution. Asε is decreased, the CHEMEQ results do not give the same increase in
accuracy for the increased computational costs.

The curves shown in Fig. 5 can be explained by comparing the CHEMEQ and the
CHEMEQ2 algorithms. The CHEMEQ stiff predictor is identical to the CHEMEQ2 pre-
dictor in the limit asα0→ 1, which corresponds top01t →∞. The CHEMEQ stiff
corrector, however, uses different average values forq andp than the CHEMEQ2 corrector
and also effectively uses thep1t → 0 limit value ofα = 1/2. This inconsistency in the
effectiveα between CHEMEQ’s stiff predictor and corrector limits the growth of1t for
CHEMEQ. Therefore, CHEMEQ takes a smaller time step than CHEMEQ2 for the same
ε, and, for moderate accuracy, this inconsistency inα does not affect the accuracy of the
solution. The best accuracy achievable by CHEMEQ suffers from this inconsistency, so as
ε becomes smaller, CHEMEQ2 gives more accurate answers than CHEMEQ.

The CHEMEQ2 curves for a fixedε show dramatic increases in accuracy after just a
few iterations. After about three iterations, the curves for a givenε flatten, which indicates
that the method has converged to a final corrector value, and additional iterations will not
improve the accuracy. The computational expense in adding iterations is less than that
in reducingε for similar improvements in accuracy. Asε is lowered, accuracy improves
because the time step is decreased. As the number of iterations increases, accuracy improves
because the corrector is able to refine the linear approximation forp andq used to calculate
q̃ and p̄ for the corrector equation, Eq. (32). Not all systems will converge for such low
values ofNc, but, in general, iterating the corrector improves the accuracy.

For the CHEMEQ2 curve forε = 0.1, the simulations took so little time that the precision
of the timing routines was not sufficient to measure differences in timing between these runs.
In addition, the calculations were performed on a computer that allows access to multiple
users. These effects contribute to the error and uncertainty in the low-resolution data.

5.2. Hydrogen–Air Tests

The H2–air combustion mechanism used consists of 25 reversible reactions involving
nine species (including inert N2) [32]. The reaction rates are calculated using the modified
Arrhenius form

kr = ATBexp(−C/T), (44)

whereT is the temperature. The ratekr is either a forward or backward rate. The parameters
A, B, andC for both the forward and backward rates for each reaction are given in Ref. [20].
Initially the mixture is at 1000 K and a pressure of 1 atmosphere and in the ratio2 : 1 :3.76
for H2 : O2 : N2. These conditions lead to initial number densities on the order of 1018 cm−3

for these three species. A minimum number density of 10−30 cm−3 is imposed on the other
species to prevent numerical difficulties. Nitrogen is inert for the mechanism and thus acts
as a diluent.

Selected species’ number densities for this problem are presented as a function of time
in Fig. 7. The figure shows that after an induction time of about 3.4× 10−4 s, H2 and O2

are converted to H2O in a relatively short time period. During this induction time radicals
are formed that eventually initiate the rapid conversion of H2 and O2. Here, we focus on the
H number density profile, which has a peak in the reaction zone that is difficult to predict
accurately. A series of calculations examined the effect ofε andNc on the location and the
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FIG. 7. Solution for the single-point hydrogen–air integration.

value of this peak. The errors in these parameters are calculated as

tp,error= ‖tp− tp,reference‖
tp,reference

(45)

(nH)p,error= ‖(nH)p− (nH)p,reference‖
(nH)p,reference

(46)

for peak number density value(nH)p at timetp, compared to reference values. The reference
values were obtained by integrating the equations with CHEMEQ2 for increasingNc and
decreasingε values, until the solution ceased changing. The solution was then verified by
comparison with a solution obtained by a simple modified Euler method using an excep-
tionally low error tolerance. Table III lists these errors and the CPU time required to reach
5× 10−4 seconds for a variety ofε andNc values. These calculations were performed on a
DEC Alpha workstation, and the CPU times in Table III are scaled using the CPU time for
theε = 10−3, Nc = 1 simulation.

Figure 8 shows results of integrations forε = 10−4 andNc = 1, 5, and 10. This should
be contrasted against the cesium calculations of the previous section that converged by
Nc = 5. In this case, the profiles are converging to the reference solution, but they have
not completely converged byNc = 10. Table III suggests that reducingε may be a more
efficient way to improve the accuracy of the solution than increasing the iteration count.
The errors are not of the same order asε, however, and reducingε by an order of magnitude
does not result in a comparable reduction in the error. The errors in the time-to-peak and
the peak value are not even comparable, with the(nH)p much more prone to error thantp.
This peak is very difficult for a low-order method to calculate. A higher-order method that
employs information from several time steps would provide a much better result for this
problem.

The question remains as to how accurate the integration can become if the number of
iterations is increased dramatically. The results forε = 10−3 from Table III are repeated in
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TABLE III

Results Obtained by Varyingε and Nc for the Hydrogen–Air

Reaction Integration

Nc

ε 1 5 10

(a) tp,Error

10−3 6.66× 10−2 2.97× 10−2 1.84× 10−2

10−4 2.79× 10−2 1.10× 10−2 6.29× 10−3

10−5 1.06× 10−2 3.67× 10−3 1.97× 10−3

(b) (nH)p,Error

10−3 0.392 0.166 9.40× 10−2

10−4 0.146 4.56× 10−2 2.35× 10−2

10−5 4.48× 10−2 1.27× 10−2 6.49× 10−3

(c) Scaled CPU Times to 5× 10−4 s
10−3 1.00 2.92 5.33
10−4 3.19 9.92 18.3
10−5 11.8 36.7 67.5

Table IV, and additional results obtained using 1000 corrector iterations are also included.
For theNc = 1000, the error in the peak value is an order of magnitude less thanε, and the
time-to-peak error is three orders of magnitude lower thanε. This suggests that the corrector
equation, Eq. (32), provides an accurate representation once it is sufficiently converged.

CHEMEQ2 inherits a final characteristic from CHEMEQ. Figure 9 shows the H profile
as the system reaches equilibrium. The CHEMEQ2 results indicate that the accuracy-based
time step can be too large for the corrector iteration to remain stable despite the fact that the

FIG. 8. Hydrogen number density forNc = 1, 5, and 10, andε = 10−4. The dark, solid line is the reference
solution, and the numbers next to the remaining curves indicate the value ofNc for each profile.
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TABLE IV

Errors in tp and (nH)p for ε = 10−3 and Nc = 1, 5, 10, and

1000, and the Scaled CPU Time Required for Each Simulation

to Reacht = 5× 10−4 Seconds

Iterations tp error (nH)P error CPU time

1 6.66× 10−2 0.392 1.00
5 2.97× 10−2 0.166 2.92

10 1.84× 10−2 9.40× 10−2 5.33
1000 2.71× 10−6 1.77× 10−4 489

stability analysis indicated thatα-QSS is A-stable for linear problems. Note that the scale in
Fig. 9 is exaggerated; the range covered by the number density axis spans approximately 1%
of the equilibrium value. This is not a problem in reacting-flow applications, as the global
time step limits how large the chemical time step becomes. In this single-point integration,
however, the instability is seen.

To overcome this instability, the convergence of the corrector iteration can be monitored.
Let yc(l )

i denote the corrected value ofyi (1t)afterl iterations. The change from one iteration
to the next,

1yc(l )
i = yc(l )

i − yc(l−1)
i , (47)

should decrease in size asl grows if the iteration is stable. The profile given as open circles

FIG. 9. Hydrogen number density as the integration approaches equilibrium,ε = 10−5, Nc = 10. The dashed
line is the standard CHEMEQ2 result. The profile given by open circles includes the stability constraint on1t
(see Eq. (48)).
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in Fig. 9 was generated using CHEMEQ2 with the additional requirement that∥∥1yc(Nc)
i

∥∥ < ∥∥1yc(Nc−1)
i

∥∥, (48)

whereNc is the specified maximum number of iterations. The oscillations in the number
density disappear when this constraint is added, and the predicted equilibrium value agrees
well with the reference solution.

5.3. Reacting-Flow Solutions

Two reacting-flow cases will be briefly discussed here. These results are provisional,
as no rigorous, systematic studies have been performed. A thorough comparison between
integration methods would include the effects of implementation choices, accuracy require-
ments, and stiffness. The stiffness issues are not limited to the chemical mechanism itself
but also include coupling of the chemical time scales and the fluid dynamics time scales (i.e.,
how much the integrator subdivides the global time step in order to perform the chemistry
integration). Such a study is planned for the future. However, from our experiences, we
expect the results described below to be typical.

Uphoff et al. [33] studied two-dimensional detonation formation using an H2/O2 mech-
anism with 18 reactions and eight species. They compared process-split reacting-flow cal-
culations using CHEMEQ and METAN1 [34] as the chemistry integrator. METAN1 is
a general stiff solver which employs a semi-implicit mid-point rule and extrapolation to
a “zero step size” solution [35–37]. For this specific set of calculations, CHEMEQ per-
formed the required chemical integrations in approximately one-sixth the time required by
METAN1. Documentation of accuracy parameters used and solution options chosen for the
calculations is not available.

An additional calculation was performed in order to compare the efficiency ofα-QSS
to a Gear method. A one-dimensional hydrogen–air premixed flame was simulated using a
process-split method [38] which employed FCT for integrating the fluid convection [39].
The chemistry integration was performed using CHEMEQ2, and also using DEBDF, which
employs a variable-order Gear method as implemented in LSODE. DEBDF is part of
SLATEC, a library of computational subroutines available on Silicon Graphics and Cray
computers [40]. CHEMEQ2 performed the required calculations in approximately one-sixth
the time required by DEBDF, which is coincidentally the same factor seen in the detonation
comparison versus METAN1. No extensive accuracy studies have been performed to ensure
that the comparison was fair. For example, the accuracy parameters for CHEMEQ2 and
DEBDF were simply set to the same value, even though the two codes do not use these
parameters in exactly the same way.

6. DISCUSSION AND SUMMARY

Theα-QSS method is intended to be a general purpose integrator for equations that are
reasonably represented by the form in Eq. (2). In the current predictor–corrector form, the
method works best as a very low-overhead, moderately accurate technique. Accuracy can
be enhanced by increasing the number of corrector iterations performed. For some systems,
convergence is very fast, and accuracy is greatly enhanced within a few iterations. For
systems that converge more slowly, reducing the accuracy parameterε used to determine
the time step is more effective in improving accuracy.
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For the slowly converging H2–air integration, the corrector provided a very accurate
solution once convergence was obtained. This suggests that Eq. (32) should be used as a
constraint equation to be satisfied by a more efficient iteration than simple back-substitution.
Future development of the algorithm will therefore focus on an implicit form of
Eq. (32),

yi (1t) = yi (0)+ 1t (q̃ − p̄yi (0))

1+ ᾱ1t p̄
, (49)

in order to find an iteration scheme that approaches the converged solution more quickly
than Eq. (32). Equation (49) is implicit since{αi }, {q̃i }, and{pi } depend upon{yi (1t)}.
This new iteration scheme could also help with the instability seen in Fig. 9 as equilibrium
is approached.

Additional analysis should also be undertaken to find a better time step criterion for
α-QSS. The criterion based on Eq. (41) does not directly measure the accuracy of the
solution and allows the corrector iteration to become unstable under certain circumstances.
Figure 5 illustrates that the rms error for the converged solution is roughly two orders
of magnitude smaller than the “error” prescribed byε. This discrepancy arises because
1t is chosen based on the difference between the predicted value and the final corrected
value, despite the the fact thatα-QSS is exact for some conditions when these values differ
greatly. Monitoring the convergence of the corrector iteration can eliminate the instability
that the accuracy-based criterion does not prevent. Also, the behavior of CHEMEQ, which
effectively usesα = 1/2 in its asymptotic corrector, suggests that an approximation for
α(p1t) much simpler than those in Eqs. (36) and (38) could be used provided it still
recovered the proper limits asp1t → 0 andp1t →∞.
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