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A quasi-steady-state method is presented that integrates stiff differential equations
arising from reaction kinetics. This predictor—corrector method is A-stable for linear
equations and second-order accurate. The method is used for all species regardless of
the time scales of the individual equations, and it works well for problems typical of
hydrocarbon combustion. Start-up costs are low, making the method ideal for use in
process-split reacting-flow simulations which require the solution of an initial-value
problem in every computational cell for every global time step. The algorithm is
described, and error analysis and linear stability analysis are included. The algorithm
is also applied to several test problems, and the results are compared to those of the
stiff integrator CHEMEQ. The method, which we calQSS, is more stable, more
accurate, and less costly than CHEMEQg 2000 Academic Press
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1. INTRODUCTION

Many problems in science and engineering may be described mathematically as cot
sets of ordinary differential equations (ODES). These may be written generically in tel
of the rates of changég; }, of the dependent variableg; }, as

dy.

g =9 1<i<n. (1)

When g; depends on variables other thgn(that is, the othery; in the system), these
equations are nonlinear.
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Our primary application of Eq. (1) is to sets of coupled, nonlinear ODEs that repres
chemical reaction sets. In this case, the dependent varigylesre concentrations or
densities of reacting chemical species. Sometimes this equation is supplemented by ar
equation for the change in temperature or energy release that results from the spe
interactions. The source tergy, which is then a function of the concentrations and th
thermodynamic state, may be written as the difference of the productiog) iatd the loss
ratep; yi:

c;—y'=Qi—DiYu 1<i<n. 2
t

The time scales; = 1/ p; for the various species often differ by many orders of magnitud
and there may be strong coupling between species (i.e., the Jacobian matrix has signi
off-diagonal elements). Under these circumstances, the set of equations representt
Eq. (2) is considerestiff and does not lend itself readily to numerical solution by classic:
methods such as the low-order Euler methods or higher-order Adams—Moulton mett
[1-3]. Such a system then requires special techniques to solve.

The coupled reaction set represented by Eq. (2) is often a part of a larger model that s
these equations coupled to the partial differential equations describing fluid dynamics
such cases, the chemical reactions are only one of several processes that might, for exa
include advection, diffusion, or radiation transport. Techniques basgdogess splitting
(or operator splitting are used to solve such chemically reacting flows [3]. The basic id
in operator splitting is to calculate the effects of individual physical processes separa
for a chosen global time stefty and then combine the results in some way. Each proce
in turn can change different system variables durkig Then, when it is time to integrate
the ODEs representing the chemical changes witttyj the integrator is faced with a new
initial value problem in each computational cell. The integrator must therefore solve

d .
df)fZQi—piyi, )=y 1<i=<n, )

tot = t° 4+ Aty. The ODE integration may subdividgty into smaller stepsat, to obtain
an accurate, stable solution. Here, the time atéfs called thechemical time stepecause

it is the time step that the ODE integrator uses to advance the chemical reactions. The
of At generally varies in the course of the calculation.

Given that fluid dynamic calculations are seldom accurate to better than a few perc
any requirement for the chemical integrator to calculate the species concentrations f
accurately than a few tenths of a percent is usually excessive. Therefore, the cher
integrator may be relatively low order. Also, since the integrator must solve multiple init
value problems “from scratch” at every global time step, it would be easiest to use a sin
point method, which uses only information from the current time level to calculate t
concentrations akt. Thisis in contrast to multi-point methods that must store concentratic
or source-term values from several successive time steps in order to advance the soll
Multi-point methods have a start-up penalty until a sufficient number of steps have b
taken to build the history required for the calculation, and they often require interpolat
procedures ifAt changes during the integration. By comparison, a single-point method t
minimal start-up penalty at the beginning of an integration step.

CHEMEQ [4, 5] is a second-order single-step ODE integrator that has been used suc
fully as a part of a number of different types of reacting-flow codes. These have inclu
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applications to combustion [6—12] and solar physics [13-15]. CHEME@Qyb&ad method
which means it chooses between a stiff method and a non-stiff method for integrating ¢
ODE within the system depending upon the time scale of that equation. CHEMEQ
been shown to outperform standard stiff ODE solvers by a factor of 50-100 in spee!
validation studies on chemical integrations alone (i.e., not coupled to fluid dynamics) w
only moderate accuracy was required [4]. More recently, an integrator based heavil
CHEMEQ outperformed a first-order quasi-steady-state method and the implicit prec
ditioning method CHEMSODE [16] on a photochemical smog problem [17]. Despite
strengths, CHEMEQ exhibits instability under some situations and is limited in the accur
it can achieve [20].

This report describes a quasi-steady-state method which we-€8S. This method is
A-stable for linear problems and second-order accurate. It is more stable, more acct
and less expensive than CHEMEQ, and it successfully integrates some systems for v
CHEMEQ fails [20]. CHEMEQ2, a subroutine that emplay€SS, has how been used suc:
cessfully in hydrogen—air flame studies in microgravity [18], on studies of pulse-detonat
engines [19], on thermonuclear mechanisms used in supernova simulations, and ol
cases used to validate CHEMEQ [20]. In addition to describing the new algorithm,
present error and linear stability analyses. Results obtained using CHEMEQ2 are comy
to those obtained using CHEMEQ.

2. INTRODUCTION TO QSS METHODS

Consider a simplified form of Eq. (2), in which the subscriigtdropped for convenience,
t9=0, andy(t%) = y°,

d
d—f =q-py y0) =y ey

If pandq are constant, then Eq. (4) has an exact solution given by
YO =y + DA —e P, (5)

Quasi-steady-state (QSS) methads based on the solution given in Eq. (5) [22—-25] If
andp are slowly varying, evaluating Eq. (5)ta& At usingq(t®) andp(t®) provides a good
approximation fory(At). This approach gives a first-order method which is the simple
QSS algorithm. More sophisticated QSS algorithms incorporate the time dependence
andqg and may place Eq. (5) into an alternative algebraic form. The common thread betw
the QSS methods is their basis in Eqg. (5), which requires the methods to return the ¢
solution ifg andp are constant. There are many QSS methods documented in the literat
and thex-QSS method is compared to several of them in Section 3.2.

QSS methods are often compared with standard stiff solvers such as LSODE [26,
which is a variable-order method based on Gear’s backward differentiation formulae (B!
[28]. However, such comparisons have been largely limited to the integration of a sir
problem from one set of initial conditions, not reacting-flow simulations in which start-i
overhead and storage requirements play key roles in the overall efficiency of the integr
Verwer and Simpson describe one such test from atmospheric chemistry, in which a
ple two-step BDF method outperforms a first-order implicit QSS method and a two-st
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explicit QSS method. The test involved the calculation of emissions and was not couj
to fluid dynamics [23]. Jagt al. introduced two QSS methods and examined their perfo
mance on a set of atmospheric tests involving 32 species [24]. These two QSS met
outperformed both a standard, first-order QSS method and CHEMEQ, but the mett
were slower than multi-point BDF methods. Variable-order, multi-point BDF methods ge
erally outperform QSS methods when the chemistry integration stands alone. Howe
the demands of a reacting-flow application are very different than those of a stand-a
integration, and the conclusions of these studies cannot be extrapolated to reacting
problems.

Detailed studies of various BDF and QSS methods, as well as other competing integra
would be required to reconcile these conflicting results and establish the best method
reacting-flow calculations. In this article, we do not attempt to settle this debate. Inste
we choose to introduce a new QSS method that is well suited to these problems.

3. THE a-QSS ALGORITHM

3.1. Algorithm Development

Given the demands of a reacting-flow application, we chose a predictor—corrector
plementation for the integrator. Evaluating Eq. (5)Ydtusing initial values serves as the
predictor step, and a correction based on the initial and the predicted values then foll
The corrector step can be repeated using the previous corrector result as the new pre
value.

First, a convenient algebraic form for Eq. (5) was chosen. Equation (5) can be evalu
att = At, yielding

At(q — py°)

At) = y°
YAD =y + 1+ apAt

(6)

for « defined by

1- (A —ePA/(pAb)

a(pAt) = e

)

The parameter is a function ofpAt, as shown in Fig. 1. Note that— 0 aspAt — —oc;
a — laspAt — oo; anda = 1/2 for pAt = 0. The meanings of these limits are clarified
by recalling thatpAt = At/t. Thea — 1 limit corresponds to an infinitely fast ODE
relative toAt, anda = 1/2 corresponds to an infinitely slow ODE. Equation (6) is exac
for any value ofp (providedq and p are constant). However, we spijtsuch thatpy is a
non-negative loss rate, so only valuespaft > 0 need be considered.

A predictor—corrector method based on the solution in Eq. (6) takes the form

0 At (qO _ pOyO)

yP =y '+ RNTS: Predictor, (8)
At (Q* — p*y")

c—y4 =21 T 77 Corrector. 9

y y 14 a*Atp* ©

Superscript 0 indicates initial values, and superschpésdc indicate predicted and cor-
rected values, respectively. The predictor uses the initial values pf andy, but the
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FIG. 1. The parametex as a function ofpAt.

“starred” variablesd*, p*, y*, anda*) can be based on both the initial values and th
predicted values.

If we assume linear profiles in time fgrand p between the initial and predicted values,
we can find an exact series solution for Eq. (2). (This solution is illustrated in conjunct
with the error analysis in Section 3.3.) Unfortunately, the series solution does not rea
provide an efficient integration technique, nor does it indicate appropriate averages
the starred variables in the corrector. However, solutions do exist under slightly sim,
conditions that can be reproduced with appropriate choices of the starred variables.

For instance, ifp is constant and is linear in time, the exact solution to Eq. (2) can be
written as

At(q - py°)
At)y=y'+ —2 7~ 1
y(Ab) Y+ T raatp (10)
for @« = a(pAt) from Eq. (7) and
4 = aq(At) + (1 — a)q°. (11)
Alternatively, ifg = 0 andp is linear in time, the exact solution of Eq. (2) is
At(=py°)
At = 0 - = = 12
y(Ab) Y+ Traatp’ 12)
in which
_ 1 0
p=5(pP(AD) + PY), (13)

anda = a(pAt) from Eq. (7).
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These exact solutions can be reproduced by our predictor—corrector scheme if we
Eq. (14) as the corrector step:

c_ 0 At (q - ayO)
y=y+ 1+ aAtp (14)
To calculatej andp from Egs. (11) and (13), we replagéAt) and p(At) with gP and pP.
Wheng andp are known functions df, the exact values @it are used in these expressions
We refer to the new method, which uses Eq. (8) as the predictor and Eq. (14) as the corre
asa-QSS. This name emphasizes the dual role dhalays in returning the exact solution
for constant] and p and in providing a weighted averageg#henq is not constant. This
method can be applied to problems with gengrahd p and not just to the simplified cases
for which a-QSS returns the exact solution. As shown in Sections 3.3 an& 35S is

A-stable for linear problems and second-order accurate for gesperad p.

3.2. Comparison to Previous Methods

In addition to the algebraic form chosen for Egs. (8) and (24§SS differs from
previous QSS methods in its choice of averaging and its implementation as a predic
corrector method. Previous methods that calculate average valugamolg use the same
averaging method for both terms. For example, the two-stage explicit method introduce
Verwer and Van Loon [22] and tested by Verwer and Simpson [23] uses a simple algek
average for botly and p calculated from initial and predicted values. CREK1D [25] use
an implicit exponential Euler formulation in whiel{ pAt) gives a weighted average of the
compositesource terms:

y(At) = y° + At(ag(At) + (1 — a)g?). (15)

In contrast, ther-QSS algorithm uses a simple algebraic averag@fand anx-weighted
average fon in order to match the exact solutions described earlier.

Other QSS methods combine the results of first-order calculations in a way that imprec
accuracy. Jagt al.[24] describe two such methods. Their “extrapolated QSS” method fin
the solution at® + At, first with a single step and then with two steps/Adf/2 each. A
simple extrapolation then estimates the solution that would result if an infinitely small tir
step were used. Their second method, “symmetric QSS,” is a two-step method requi
three evaluations of the source terms. Each of these steps actpasdip were constant,
and the values fag and p are taken at the same time level based on the previous calculati
No averaging of] or p occurs between time levels in these methods.

The algebraic form of Egs. (8) and (14), which was introduced in Eq. (6), is based on
asymptotic update employed by CHEMEQ when the time scale for an equation is sme
than some user-specified value [4, 5]. However, CHEMEQ effectively replaicd=sq. (14)
with the constant 12, which is equivalent to choosing the Raalyproximation [2]

2+ X
2—X

exp(x) ~ (16)

either in the definition o or in Eq. (5). When the time scale for an equation is larger tha
some user-specified value, that equation is integrated using the modified Euler method
hybrid method studied by Lorenzini and Passoni [17] uses CHEMEQ'’s update equati
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but different criteria for determining the time step and for choosing between the asympt
and standard modified Euler updates. CHEMEQ'’s asymptotic update also uses diffe
averages in the corrector fgrandq than those used in Eq. (14). These differences lec
to instability in CHEMEQ that is illustrated in Section 5. The averages chosenr®$S
eliminate this instability, and-QSS automatically approaches the modified Euler methc
aspAt — 0.

3.3. Error Analysis

The method has a third-order error term for a single step, which makes it second-o
accurate over the course of an integration. This can be shown by examining the exact ¢
solution of Eq. (1). Writing the series for(t), q(t), and p(t) about initial valuesyy, do,
andpg att® = 0 gives

y(t) = Yo+ yit + yat® + - =yt (17)
j=0
qt) = > _qt!, (18)
j=0
pt) = pitl. (19)
j=0

This development deals with a single specigsp subscripf corresponds to the coefficient
of thet) terms in the expansions in Egs. (17)—(19) and nof thespecies in a multi-species
system. Substitution into Eq. (4) provides the coefficients/foy in Eq. (17),

1 =
i=jg (%’—1 -> pj—l—kYk) ; (20)
k=0

for j > 0.

In general,q and p are given as functions of, not as functions of. Therefore, the
coefficients in Egs. (18) and (19) are not known, and Eq. (4) is a nonlinear differen
equation. We will first perform an error analysis for the linear version of Eq. (4), in whi
g and p are known functions ot, and then extend this analysis to the nonlinear case. F
the linear case, the predicted values are singply= q(At) and p? = p(At). Subtracting
the series expansion for Eq. (14) from the exact solution evaluateg att yields

AP/ 1 :
(A =y = = (—5 P1do — 02 + pzyo) +O(AtY) [linearcase].  (21)
The leading error term i© (At®) per time step. Since the number of time steps required
reach a given time is proportional tg At, the error for the method is second-order [1].
The method is second-order for nonlinear problems as well. To illustrate this, first n
that the leading error term for the predicted valy&ss second-order:

At2
y(At) — yP = — (= pyo) + o(atd). (22)
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Sinceq and p are polynomials in the species concentrations for the nonlinear syste
representing reaction kinetics, the leading error terms for the predicted wflusesd pP
are also second-order. This error can be represented as
q(At) — 0P = e At* + O(ALS), (23)
P(AL) — pP = €, At? + O(ALD), (24)

for some unknown coefficientg ande,. Using these predicted values in Eq. (14) gives a
error term of the form

V-V Y S N PN 1 1 4
Yy(Al) —y" = At 15 P29 6Q2+6p2y0+2€q 5€pYo0 + O(At™Y)

[nonlinear case] (25)

As with the linear problem, the leading-order error term for the nonlinear problérris®),
and the method is still second-order over the course of an integration.

3.4. Linear Stability Analysis

For the single linear equation

dy

—= =y, 26

qt =M (26)
the coefficients can be a function of but not a function ofy. Using the average value

given by
- 1
A= E(A(t =0) + A(t = A1), 27)

a-QSS has amplification fact@ given by
AAL

+1—aAAt

(28)

The signs in Eq. (28) reflect the fact that= — p, and note thatr = a(—LAL). Using
Eq. (7), the expression f@ simplifies to

G = exp(AAL). (29)
For = a+ by/—1 with a, b both real, the magnitude @ is simply
G| = exp(@aAt). (30)

Since||G|| < 1 fora < 0 for any value ob, the method is A-stable. This does not prove
thatx-QSS is A-stable when applied to nonlinear systems of ODEs for wipchand
{qi} depend orly; }. However, in testing to date, an accuracy-based time step criterion |
worked well for the QSS update. This criterion, used originally in the subroutine CHEME
[5], was used in CHEMEQ?2 [21] to generate the results presented in Section 5.
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4. IMPLEMENTATION ISSUES

The «-QSS update is used on all equations in the system regardless of the time s
of the ODE, and iterations may be done on the corrector that improve the accuracy o
result. Again using superscript O to indicate values at the beginning of the chemical t
step and subscriptto specify specieg the QSS update is given by

v =y’ + 7&9? Predictor (31)
P T alAtp?
At(G — Py
c_ o 0 HAJ
Y=Y + 1+ @Aty Corrector (32)

The predictor uses all initial values, anfl = a(pPAt). After calculating the predicted
concentrationgy”} for all of the species in the system, next obt@ifi} and{ p"} from {y’},
and then calculate

1
m=(p+ ), (33)
o = a(piAt), and finally
G =@q’ + (1 —a@)g’. (34)

Equation (32) then gives the corrected concentrat{gfis To iterate on the corrector, use
the valuegy°} from one step agy’} for the next step.

Having an accurate approximation fe¢pAt) that does not require an evaluation of the
exponential function makes the method given by Egs. (31) and (32) more attractive. Re¢
that p is strictly non-negative based on the way the chemical source term is split, so
approximation need only hold for positive valuesht. Equation (7) indicates that as
pAt — oo, a reasonable approximation f@(pAt) is

1

Using this approximation fo eliminates the need to find an accurate approximation fc
e *asx — oo, as would be required if the solver were based on Eq. (5) rather than Eq.
Using the Padapproximation [2]

__ 16804 840x + 180x* 4 20x® + x*

~ 36
1680— 840x + 180x2 — 20x3 + x* (36)
in the definition ofw(pAt) gives
8403 +1402+20r +1
a(pat) v T T T (37)

16803 + 40 ’

forr = 1/(pAt). These two approximations are shown with the exact curve forig. 2.
The approximation given by Eq. (37) is labeled Bdd). Unlike Fig. 1, thex-coordinate
in Fig. 2 isr. The linear approximation in Eq. (35) is closer to the exact value thfan
the approximation in Eq. (37) for < 0.16762; for > 0.16762, Eq. (37) is more accurate.
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FIG. 2. Approximations forx as a function of = 1/(pAt).

Therefore, the better approximation can be chosen based upon the vallibisfcombined
approximation differs from the exact value @fby at most 08%. This error occurs in a
narrow region around the transition from the linear to the rational approximation.

A second approximation far results from the Padapproximation

o ~ 360+ 120x 4 122
7 360— 240k + 72x2 — 12x3 + x4’

(38)
This approximation gives

1803 + 602+ 11r +1

At) ~ .
“(PAD > e 602 + 12 + 1

(39)

This second approximation faris designated P&d(b) and is also shown in Fig. 2. Since
this approximation recovers = 1 forr = 0 anda — 1/2 forr — oo, Eg. (39) can be
used alone with only a slight accuracy penalty compared to the combined approxima
of Egs. (35) and (37). In testing to date, this accuracy penalptias not caused accuracy
problems in the species solutions, and using this single equation eliminates the logic cl
required to determine which of Egs. (35) or (37) to use for the combined method.

Accuracy is controlled by choosingt and the number of corrector iteratiord;. A
single corrector calculation is performedNf = 1, and as Section 5 illustrates, increasing
N improves accuracy. The subroutine CHEMEQ2 used todtedSS choosedt using
the same accuracy-based criterion as CHEMEQ. An introduction to the time step crite
is needed to understand the results comparison of Section 5, but the specifics of the
plementation are not included here. The time step selection algorithm is fully documer
elsewhere [20, 21]. The difference between the predicted and corrected concentration v
is modeled as a single second-order term;

¥ — P = apx(AnZ (40)
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The user specifies a target magnitude for this correction term using a parameter

82( AL [liarger= YL (41)

The coefficient; is calculated from Eq. (40) using values g, yP, andAt for the current
update. A newAt is then calculated based on Eq. (41). In the numerical implementatic
the At calculation is biased such that is lowered quickly if the correction term is too
large, and the species requiring the most restrictivgoverns the calculation [5].

The effect of the thermodynamic state on the reaction rate constants has been ignot
the previous developments. The rate constants are often calculated once before the pre
step using the initial values and held constant during the corrector step. A new therm
namic state is then found at the new time level and used for the following predictor
corrector. If the integration is particularly sensitive to the thermodynamic state, this s
can be recalculated for the corrector using the predicted solution. If the system reqt
the integration of a thermodynamic variable (such as temperature) along with the spe
concentrations, then the source term for this extra variable is split just as with the con
trations. If there is no “loss” term for that variable that can be assumed proportional to
variable, then the entire source termis assigned &amd the method reduces to the modifiec
Euler method for that equation sine€0) = 1/2.

Linear stability analysis indicates th@tQSS is A-stable, but this result holds no guar
antees for the nonlinear systems of chemical kinetics. In a stand-alone integration
accuracy-based time step criterion used by CHEMEQ2 can allow the time step to ¢
large enough as equilibrium is approached so that the method becomes unstable [20].
phenomenon is illustrated in Section 5 and discussed further in Section 6. For such ca:s
stability constraint such as that discussed in Section 6 may be used, or a ceiling on the
step may be imposed. In a reacting-flow code, the global time step acts as a ceiling ol
chemical time step, so this instability problem is minimal.

5. NUMERICAL RESULTS

Two examples are described here in detail. The first is a system of equations invol
cesium and cesium ions that was originally suggested by D. Edelson of Bell Laboratol
This test was used to compare the original CHEMEQ subroutine to other stiff solve
including those of Gear and Kregel, as shown in [5]. The second set of tests involve
hydrogen—oxygen combustion mechanism and focuses on the effect of corrector iter:
on the timing and accuracy of-QSS. Thex-QSS calculations were performed by the
subroutine CHEMEQ?2, which is the subroutine CHEMEQ with its hybrid method replac
with -QSS. Two reacting-flow applications are then discussed briefly in Section 5.3.

5.1. Cesium Tests

The cesium mechanism, shown in Table I, involves seven species and seven one
reactions. The rate constattsare fixed at the values shown. The inert collision partner, |
in reaction 5, may be Cs, Cs(0;, or N,, so the concentration of M used to calculate the
reaction rate is the sum of the concentrations of these four species. The initial condit
and the solution values at 1000 s used for the accuracy study are included in Table II
These solution values, which we call the “accepted values” in the following error analy
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TABLE |
Cesium Mechanism

Reaction k;
1) O, +Cs % cst0, 5x 108 c/s
2) Cs+e 3cCs 1x 102 cmifs
3) csfcs e 324x103s?
9 o %o4e 4x10tst
5 0,4+ Cs+M 8 Csq+M 1 x 10 crils
6) Ote +0,20,+0, 1.24x 10°% cnf/s
7) Ote +N;, 20, +N, 1x 10 cnfls

are the common result of running LSODE and CHEMEQ?2 at excessively high accurac
The species number densities as a function of time for this case are shown in Fig. 3.

Time step histories for CHEMEQ2 and CHEMEQ are shown in Fig. 4. As mention
earlier, the asymptotic update used by CHEMEQ is unstable under some circumstar
and the details of this instability are documented elsewhere [20]. This cesium integra
is an example of when CHEMEQ becomes unstable. CHEMEQ produces oscillation:
At between 20 s and 1000 s. CHEMEQ?2 does not produce these oscillations, althoug
accuracy-based time step constraint lowers the time step in this region.

A series of studies evaluated the accuracy of CHEMEQ2 compared to CHEMEQ. Th
solved the Cs test problem given above and used the reference solution at 1000 s
benchmark. The tests varied the value éfom 107! to 10-. Additional tests fixed and
varied N; from 1 to 10. Figure 5 summarizes the results of the tests by showing the r
error as a function of CPU time, which was scaled by the smallest increment the tim
routine could resolve. The CHEMEQ?2 results are shown as a series of overlapping pro
of the shape shown in the schematic in Fig. 6. Each profile is for a fixed valyeantl the
points on it correspond to different valuesid.

The error computed for each computation (fixeand N) is based on the the accepted
values at 1000 s. The relative ermifor each specieisis

Yi ,accepted— Vi, calculated
g = . (42)
Yi.accepted

TABLE Il
Initial and t = 1000 s Species Concentrations for the Cesium
Mechanism Test Problem

Species yi (09 (cm™3) yi (1000 8 [cm~3]
e 1x 10 4.9657897283« 10*
O, 52 x 1% 2.5913949444« 10*
Cs' 6.2 x 107 7.5571846728« 10*
Cs 1x 10%2 1.5319405460«< 10°
CsO, 0 1000x 102
N, 1.4 x 10" 1.400x 10*®

O, 3.6 x 10 3.590 x 10*
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FIG. 3. Species number densities as a function of time for the cesium mechanism test problem.

A root-mean-square error for the six reacting species (excluding the igeid N

6
€ms = L:iglaz . (43)

There is only a single curve for CHEMEQ in Fig. 5. Each point on this curve corr

sponds to a different value @&f The hybrid method, as implemented in CHEMEQ an

used in this problem, becomes unstable and the solutions are corrupted if multiple corre

iterations are used. Lorenzini and Passoni, however, were able to use multiple corre

2 —
15k At for CHEME(VQ/Z'/,/
’w\ L
- T
4 |
0.5 [ At for CHEMEQ
0 TR T W R [N SN SN SO WO I TR T S N SN SR S SO |
0 50 100 150 200

Time (s)

FIG. 4. Time step histories for the cesium integration using CHEMEQ and CHEMEQ2406.01.
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FIG.5. Rootmeansquare errorat1000 s versus scaled CPU time to reach 1000 s for CHEMEQ and CHEM

for a range ofe and N.. A schematic of each CHEMEQ?2 curve is shown in Fig. 6, and the CHEMEQ resul
correspond te = 10°* to 10°S.

iterations successfully in other implementations of the hybrid method for other proble
[17]. CHEMEQ?2 does not have this instability problem.

For a single iteration and large enoughthe CHEMEQ?2 results lie roughly along the
CHEMEQ curve. In this case, the CHEMEQ?2 simulation takes less time, but gives a |

log,,(rms error)

log,,(scaled CPU time)

FIG. 6. Schematic of the types of profiles for fixedn Fig. 5. The numbers next to each symbol give the

corresponding value dfi;. As described in the text, the solutions for the cesium test problem converge after ab
three iterations.
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accurate solution. Asis decreased, the CHEMEQ results do not give the same increas
accuracy for the increased computational costs.

The curves shown in Fig. 5 can be explained by comparing the CHEMEQ and
CHEMEQ?2 algorithms. The CHEMEQ stiff predictor is identical to the CHEMEQ2 pre
dictor in the limit asa® — 1, which corresponds t@°At — co. The CHEMEQ stiff
corrector, however, uses different average valueq tord p than the CHEMEQ?2 corrector
and also effectively uses theAt — 0 limit value of@ = 1/2. This inconsistency in the
effectivea between CHEMEQ's stiff predictor and corrector limits the growthnaffor
CHEMEQ. Therefore, CHEMEQ takes a smaller time step than CHEMEQ?2 for the sa
¢, and, for moderate accuracy, this inconsistency thoes not affect the accuracy of the
solution. The best accuracy achievable by CHEMEQ suffers from this inconsistency, s
¢ becomes smaller, CHEMEQ?2 gives more accurate answers than CHEMEQ.

The CHEMEQ?2 curves for a fixeel show dramatic increases in accuracy after just
few iterations. After about three iterations, the curves for a givibatten, which indicates
that the method has converged to a final corrector value, and additional iterations will
improve the accuracy. The computational expense in adding iterations is less than
in reducinge for similar improvements in accuracy. Asis lowered, accuracy improves
because the time step is decreased. As the number of iterations increases, accuracy im|
because the corrector is able to refine the linear approximatigndadq used to calculate
g and p for the corrector equation, Eq. (32). Not all systems will converge for such Ic
values ofNc, but, in general, iterating the corrector improves the accuracy.

Forthe CHEMEQ?2 curve far = 0.1, the simulations took so little time that the precisior
of the timing routines was not sufficient to measure differences in timing between these r
In addition, the calculations were performed on a computer that allows access to mul
users. These effects contribute to the error and uncertainty in the low-resolution data.

5.2. Hydrogen-Air Tests

The H—air combustion mechanism used consists of 25 reversible reactions involv
nine species (including inertA\N[32]. The reaction rates are calculated using the modifie
Arrhenius form

k- = ATBexp(—C/T), (44)

whereT is the temperature. The rdkteis either a forward or backward rate. The parametel
A, B, andC for both the forward and backward rates for each reaction are given in Ref. [Z
Initially the mixture is at 1000 K and a pressure of 1 atmosphere and in the2rali8.76
for H, : O, : N,. These conditions lead to initial number densities on the order’§icho 2

for these three species. A minimum number density 0f48m~2 is imposed on the other
species to prevent numerical difficulties. Nitrogen is inert for the mechanism and thus
as a diluent.

Selected species’ number densities for this problem are presented as a function of
in Fig. 7. The figure shows that after an induction time of abo4t310~* s, H, and Q
are converted to D in a relatively short time period. During this induction time radical
are formed that eventually initiate the rapid conversion péhid Q. Here, we focus on the
H number density profile, which has a peak in the reaction zone that is difficult to prec
accurately. A series of calculations examined the effeetaxfd N on the location and the
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FIG. 7. Solution for the single-point hydrogen—air integration.

value of this peak. The errors in these parameters are calculated as

th —t
tp,error _ || p p,reference“ (45)
tp.reference
l(NH)p — (NH)p referencd|
(nH)p,error = P R (46)

(nH)p,reference

for peak number density valyay), at timet,, compared to reference values. The referenc
values were obtained by integrating the equations with CHEMEQ2 for incredgiagd
decreasing values, until the solution ceased changing. The solution was then verified
comparison with a solution obtained by a simple modified Euler method using an exc
tionally low error tolerance. Table Ill lists these errors and the CPU time required to re:
5 x 10~ seconds for a variety afand N, values. These calculations were performed on
DEC Alpha workstation, and the CPU times in Table Il are scaled using the CPU time
thee = 1073, N, = 1 simulation.

Figure 8 shows results of integrations foe= 10~* andN; = 1, 5, and 10. This should
be contrasted against the cesium calculations of the previous section that converge
N. = 5. In this case, the profiles are converging to the reference solution, but they h
not completely converged by, = 10. Table Ill suggests that reduciegnay be a more
efficient way to improve the accuracy of the solution than increasing the iteration cot
The errors are not of the same ordet asowever, and reducingby an order of magnitude
does not result in a comparable reduction in the error. The errors in the time-to-peak
the peak value are not even comparable, with(thg, much more prone to error thag
This peak is very difficult for a low-order method to calculate. A higher-order method tt
employs information from several time steps would provide a much better result for t
problem.

The question remains as to how accurate the integration can become if the numb
iterations is increased dramatically. The resultssfer 10-2 from Table 11l are repeated in
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TABLE 1l
Results Obtained by Varyinge and N, for the Hydrogen—Air
Reaction Integration

N,
& 1 5 10
(a) tp, Error
102 6.66 x 1072 2.97 x 1072 1.84x 1072
104 2.79x 1072 1.10x 102 6.29 x 1072
10°° 1.06 x 102 3.67x 102 197 x 1073
(b) (nH)pA Error
103 0.392 Q166 940 x 102
104 0.146 456 x 1072 2.35x 1072
10°° 4.48 x 102 1.27 x 1072 6.49 x 1073
(c) Scaled CPU Timesto& 10*s

103 1.00 2.92 5.33
104 3.19 9.92 18.3
10°° 11.8 36.7 67.5

Table IV, and additional results obtained using 1000 corrector iterations are also inclu

423

For theN., = 1000, the error in the peak value is an order of magnitude lesgsttzam the

time-to-peak error is three orders of magnitude lower thanis suggests that the corrector
equation, Eq. (32), provides an accurate representation once it is sufficiently converge

CHEMEQ?2 inherits a final characteristic from CHEMEQ. Figure 9 shows the H prof
as the system reaches equilibrium. The CHEMEQ?2 results indicate that the accuracy-k
time step can be too large for the corrector iteration to remain stable despite the fact the

H Number Density (cm®)

x10"

Ref. [\,

TR
3.5
Time (sec)

x10™

FIG. 8. Hydrogen number density fo¥. = 1, 5, and 10, and = 10-*. The dark, solid line is the reference

solution, and the numbers next to the remaining curves indicate the vaNigfarf each profile.
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TABLE IV
Errors in t, and (ny), for e = 1073 and N = 1, 5, 10, and
1000, and the Scaled CPU Time Required for Each Simulation
to Reacht = 5 x 10~* Seconds

Iterations t, error (ny)p error CPU time
1 6.66 x 1072 0.392 100
5 297 x 1072 0.166 292
10 184 x 102 9.40 x 1072 5.33
1000 271 x 10°¢ 1.77 x 104 489

stability analysis indicated thatQSS is A-stable for linear problems. Note that the scale i
Fig. 9is exaggerated; the range covered by the number density axis spans approximate
of the equilibrium value. This is not a problem in reacting-flow applications, as the glol
time step limits how large the chemical time step becomes. In this single-point integrat
however, the instability is seen.

To overcome this instability, the convergence of the corrector iteration can be monitol
Let yic(') denote the corrected valuewf At) afterl iterations. The change from one iteration
to the next,

| | 1-1
AyRD = ye _ yel=D

(47)

should decrease in size lagrows if the iteration is stable. The profile given as open circle

x10"
1.03
1.029-
~1.028
§ 1.027
P )
£ 1.026} o eran .
8 1025 Sy
2 1.024}
g 1023k Reference Solution
z [ CHEMEQ2
T 1022} ° CHEMEQ2 with stability check
1,021} onat
1.02_|||.I|.||I||||I|.||l
3 3.25 35 3.75 4
Time (s) x10*

FIG.9. Hydrogen number density as the integration approaches equilibrien1,0-°, N, = 10. The dashed
line is the standard CHEMEQ?2 result. The profile given by open circles includes the stability constraint on
(see Eq. (48)).
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in Fig. 9 was generated using CHEMEQ2 with the additional requirement that

HAin(Nc) < ||Ain(Nc—1) ,

(48)

whereN; is the specified maximum number of iterations. The oscillations in the numt
density disappear when this constraint is added, and the predicted equilibrium value ag
well with the reference solution.

5.3. Reacting-Flow Solutions

Two reacting-flow cases will be briefly discussed here. These results are provisio
as no rigorous, systematic studies have been performed. A thorough comparison bet
integration methods would include the effects of implementation choices, accuracy reqt
ments, and stiffness. The stiffness issues are not limited to the chemical mechanism
but also include coupling of the chemical time scales and the fluid dynamics time scales
how much the integrator subdivides the global time step in order to perform the chemi
integration). Such a study is planned for the future. However, from our experiences,
expect the results described below to be typical.

Uphoff et al.[33] studied two-dimensional detonation formation using ap® mech-
anism with 18 reactions and eight species. They compared process-split reacting-flow
culations using CHEMEQ and METANL1 [34] as the chemistry integrator. METAN1
a general stiff solver which employs a semi-implicit mid-point rule and extrapolation
a “zero step size” solution [35—-37]. For this specific set of calculations, CHEMEQ p
formed the required chemical integrations in approximately one-sixth the time requirec
METANL. Documentation of accuracy parameters used and solution options chosen fo
calculations is not available.

An additional calculation was performed in order to compare the efficienay@8S
to a Gear method. A one-dimensional hydrogen—air premixed flame was simulated us
process-split method [38] which employed FCT for integrating the fluid convection [3
The chemistry integration was performed using CHEMEQ2, and also using DEBDF, wt
employs a variable-order Gear method as implemented in LSODE. DEBDF is par
SLATEC, a library of computational subroutines available on Silicon Graphics and C
computers [40]. CHEMEQZ performed the required calculations in approximately one-s
the time required by DEBDF, which is coincidentally the same factor seen in the detona
comparison versus METAN1. No extensive accuracy studies have been performed to el
that the comparison was fair. For example, the accuracy parameters for CHEMEQ2
DEBDF were simply set to the same value, even though the two codes do not use t
parameters in exactly the same way.

6. DISCUSSION AND SUMMARY

Thea-QSS method is intended to be a general purpose integrator for equations tha
reasonably represented by the form in Eq. (2). In the current predictor—corrector form,
method works best as a very low-overhead, moderately accurate technique. Accurac
be enhanced by increasing the number of corrector iterations performed. For some sys
convergence is very fast, and accuracy is greatly enhanced within a few iterations.
systems that converge more slowly, reducing the accuracy parasnesed to determine
the time step is more effective in improving accuracy.
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For the slowly converging H-air integration, the corrector provided a very accurat
solution once convergence was obtained. This suggests that Eq. (32) should be use
constraint equation to be satisfied by a more efficientiteration than simple back-substitu
Future development of the algorithm will therefore focus on an implicit form c
Eq. (32),

At(G — py(0)

— 49
14+ aAtp (49)

yi(A) =y (0) +
in order to find an iteration scheme that approaches the converged solution more qui
than Eq. (32). Equation (49) is implicit sind&;}, {Gi}, and{p;} depend uporfy; (At)}.
This new iteration scheme could also help with the instability seen in Fig. 9 as equilibri
is approached.

Additional analysis should also be undertaken to find a better time step criterion
«a-QSS. The criterion based on Eq. (41) does not directly measure the accuracy of
solution and allows the corrector iteration to become unstable under certain circumstar
Figure 5 illustrates that the rms error for the converged solution is roughly two ord
of magnitude smaller than the “error” prescribed &yThis discrepancy arises because
At is chosen based on the difference between the predicted value and the final corre
value, despite the the fact thatQSS is exact for some conditions when these values diff
greatly. Monitoring the convergence of the corrector iteration can eliminate the instabi
that the accuracy-based criterion does not prevent. Also, the behavior of CHEMEQ, wi
effectively usesx = 1/2 in its asymptotic corrector, suggests that an approximation f
a(pAt) much simpler than those in Egs. (36) and (38) could be used provided it s
recovered the proper limits ggAt — 0 andpAt — oo.
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